【原著】

IVR 室内における線量分布図及び ジオメトリ表示のシステム化

荒井僚太^{*1} 工藤幸清^{*2} 阿保淳^{*1} 千田真由香^{*1} 坂本颯^{*1} 野呂朝夢祐^{*3} 小山内暢^{*2} 對馬惠^{*2} 小宮睦弘^{*4} 葛西慶彦^{*5} 成田将崇^{*5}

(2023年6月6日受付, 2023年6月24日受理)

要旨: Interventional radiology (IVR) 室内の空間線量分布図の表示は専門的な知識を持たない放射線診療従事者に対す る放射線防護教育に利用できることが示唆されている。本研究では、モンテカルロシミュレーションソフト particles and heavy ion transport code system (PHITS) を用いて、想定した術者位置の線量にて規格化した線量比により平板ファ ントムを用いた IVR 室内の空間線量分布のシミュレーション結果と実測値を比較した。その結果、テーブルサイドス テータスコントロールを支持するポールやポールを固定する支持体、テーブルを支える物体等を考慮することにより シミュレーション結果と実測値に有意差は見られなかった (p>0.01)。次に、人体デジタルファントムによる寝台位置 や管球角度毎の IVR 室内における空間線量分布図及びジオメトリを算出した。さらに、excel visual basic for applications (Excel VBA) を利用して得られた空間線量分布図及びジオメトリを表示するシステムを構築した。寝台位置や管球角 度を変化させた場合の変化前後の画像表示も行えるようにシステム化を行った。これは、放射線について学ぶ方に対 する放射線防護教育に寄与すると考えられた。ただし、本研究で得られた空間線量分布図はあくまでシミュレーショ ン結果であり、実際の線量を反映したものではないということに留意する必要がある。

キーワード: IVR, 空間線量分布, モンテカルロシミュレーションソフト

I. はじめに

X線透視装置を使用した画像下治療(IVR, Interventional radiology)は、手術のような大きな侵襲なしにX線透視下で動脈塞栓術や血管形成術を行うため、救命に直結する処置として普及してきた。

しかし、IVR では処置に時間を要することが多く、また IVR に従事する医師や看護師等の医療従事者は散乱 X 線に よる被ばくが避けられないため、IVR 室内の空間線量分布 を知ることは被ばく低減の観点から有意義である。

一方, IVR 室内の空間線量分布はモンテカルロシミュレ ーションソフト等を用いることにより算出が可能である。 労働安全衛生法の電離放射線障害防止規則及び国家公務員 法の人事院規則においては, IVR 室内の空間線量分布の実 測が困難な場合は算出したものを関係職員に周知させなけ

- Hirosaki University Graduate School of Health Sciences 〒036-8564 青森県弘前市本町 66-1 TEL:0172-33-5111 66-1, Honcho, Hirosaki-shi, Aomori, 036-8564, Japan
- *3 弘前大学大学院保健学研究科博士前期課程
- Hirosaki University Graduate School of Health Science (Master Course) 〒036-8564 青森県弘前市本町 66-1 TEL:0172-33-5111 66-1, Honcho, Hirosaki-shi, Aomori, 036-8564, Japan
- *4 弘前総合医療センター Hirosaki General Medical Center 〒036-8545 青森県弘前市富野町1 TEL 0172-32-4311 1, Tominocho, Hirosaki-shi, Aomori, 036-8545, Japan
- *5 弘前大学医学部附属病院 Hirosaki University Hospital 〒036-8563 青森県弘前市本町53 TEL:0172-33-5111 53, Honcho, Hirosaki-shi, Aomori, 036-8563, Japan

Correspondence Author kohsei@hirosaki-u.ac.jp

ればならないとしている^{1),2)}。また,2020年4月より医療 法施行規則の一部が改正され施行,医療放射線に係る安全 管理の研修を行うことが義務付けられている³⁾。これは, IVR を行う医師だけではなく,放射線診療を受ける者への 説明等を実施する看護師等にも行わなければならないとす るものである⁴⁾。研修項目には放射線防護の最適化に関す るものも含まれ,空間線量分布図の表示は防護の最適化に 寄与する。また,シミュレーションで得られる空間線量分 布図は実際の現場でも活用でき,専門的な知識を持たない 放射線診療従事者に対する放射線防護教育に利用できるこ とが示唆されている⁵⁾。空間線量分布図は,実測またはシ ミュレーションにより得られ,シミュレーションで得られ る空間線量分布と実測値の間には,平均20%程度の差異が 報告されているが,放射線防護教育においては十分に有用 であるとされている⁶。

IVR 室の出入り口に掲示される空間線量分布図はあくま である状態における空間線量分布図であり,寝台の位置や 透視装置の管球角度等により大きく変化するものである。 また,先行研究では寝台を移動する際における空間線量分 布の変化については報告されていない。

そこで本研究では、モンテカルロシミュレーションソフ ト particles and heavy ion transport code system (PHITS)⁷⁾ を 用いてシミュレーションを行い、得られた X 線管の管球角 度及び寝台位置毎の空間線量分布図並びにそのジオメトリ を同時に表示するシステムを excel visual basic for applications (Excel VBA) を用いて構築した。

^{*1} 弘前大学医学部保健学科 Hirosaki University School of Health Sciences 〒036-8564 青森県弘前市本町 66-1 TEL:0172-33-5111 66-1, Honcho, Hirosaki-shi, Aomori, 036-8564, Japan

^{*2} 弘前大学大学院保健学研究科

Ⅱ. 方法

1. 使用機器等

- ・モンテカルロシミュレーションソフト: PHITS ver3.24.
- ・平板デジタルファントム(Water): 30cm×30cm×20cm.
- ・人体デジタルファントム(身長 163cm, 体重 60kg): ICRP
 Pub.110 女性⁸⁾.
- ・平板ファントム: Tough water ファントム (30 cm×30 cm × 20 cm).
- ・IVR 装置: Innova IGS630 (GE heathcare, Tokyo, Japan).
- ・線量計: Raysafe X2 (Raysafe, Billdal, Sweden), 1cm 線量当 量対応型電離箱式サーベイメータ, ICS - 1323C (Hitachi, Tokyo, Japan).
- ・Excel のマクロ機能記述プログラミング言語: Excel VBA.

2. シミュレーション体系

PHITS によるシミュレーションで使用した室は,横 x=650cm,縦y=400cm,高さz=300cmとした (図 1)。また, 照射野中心について,平板デジタルファントムにおいては ファントム中心を (x, y)= (0, 0) とし,この際,床面から 100cm の位置がファントム中心となるよう体系を設定した。 人体デジタルファントムにおいては正中の肝臓レベルとし た。術者の位置は x=50cm, y=-50cm の位置を想定した。空 間線量分布図の高さは全て床面から 100cm とした。

3. 平板ファントムを用いた PHITS によるシミュレーションと実測値の関係

散乱体として平板ファントムを用い,PHITSによるシミ ュレーションと実測による線量の関係を明らかにするため, 管電圧 60kV 及び 100kV,付加フィルタは銅の 0.1mm 及び 0.3mm を使用してシミュレーションを行い,実測値との比 較を行った。また,この時の照射野は検出器面において 16cm×16cm,線源検出器間距離は 100cm とした。

シミュレーションにおいては, アンダーテーブルチュー ブを想定し, X 線源位置は床面から高さ 30cm とした。X 線スペクトルは X 線スペクトル近似計算ソフト X-Tucker-4⁹⁾を用いて算出したものを一次線として使用した。この際の固有フィルタは実測を行った装置と同様に 3.5mmのAlとした。使用したX線スペクトルの半価層から求めた実効エネルギーを表1に示した。なお、1回のシ ミュレーションでの繰返し計算回数を3×10⁷回とした。

y=-50cm の術者位置を含む x 座標の線量を 10cm 間隔の 粒子フルエンスより求め,粒子フルエンスに光子フルエン ス当たりの換算係数¹⁰⁾を乗ずることにより,周辺線量当 量 *H**(10)を算出し,術者位置 x=50cm の位置の線量で規 格化した。PHITS の誤差の確認のため 60kV,0.1mmCu に おいては,時間依存の乱数オプションを設定し,シミュレ ーションを行う毎に異なる乱数を使用した。このシミュレ ーションを3 回行い,平均値及び標準偏差を算出した。

表 1 X線スペクトルの実効エネルギー

管電圧、フィルタ	実効エネルギー
60kV, 0.1mmCu	34.5 keV
60kV, 0.3mmCu	38.3 keV
100kV, 0.1mmCu	40.6 keV
100kV, 0.3mmCu	45.0 keV

実測はシミュレーション体系と同様に配置し,電離箱式 サーベイメータを用いて周辺線量当量 H*(10) を 50cm 毎 に測定した。照射は撮影モードで行い,1回の曝射は4フ レーム/秒,5秒とした。その他は自動設定であるため,曝 射後の dose report より管電圧 84.7kV,管電流 294mA,1フ レーム 50msec であることを得た。また Raysafe X2 により 一次線を測定したところ半価層が 5.00mmAl であり,この 半価層から求めた実効エネルギーは 38.9keV であった。

線量測定は 3 回行い, x=50cm の位置の線量で規格化した値(実測値とした)とシミュレーション結果を比較した。 この際,明らかな差を評価するために平均値の差の検定 (Welchのt検定)を有意水準1%で行った。

次に、シミュレーション体系にない吸収体の影響を調べた。寝台には術者が装置を操作するためのテーブルサイドステータスコントロールが配置され、実測の際、このステータスコントロールを配置しなかったが、これを受けるポールとポールを固定する支持体があり、支持体は厚い金属に留められ、さらに寝台を支える金属板や金属レール、金具等も存在した。ポールは長さ193cm、幅0.7cm、高さ2.5cmの金属製であり、位置は x=92.0~285.0cm、y=-36.2~35.5cm、z=-17.5~15.0cmである。支持体は長さ200cm、幅7cm、高さ11.5cmの金属製であり、位置は x=85.0~285.0cm、y=-33.5~26.5cm、z=-26.5~15.0cmである。また、支持体を留める厚い金属と寝台を支える部材等については、配置や部材が明確ではないため、支持体の間を鉄として扱った。位置は x=85.0~285.0cm、y=-26.4~26.4cm、

z=-26.5~-15.0cm とした。ポール並びに支持体等の影響を 確認するため、これらをシミュレーション体系に組み込み 再度 3 回計算を行い、x=50cm の位置の線量で規格化した 値を算出した。このシミュレーション結果と実測値の平均 値の差の検定(Welch のt検定)を有意水準1%で行った。

なお,シミュレーションでは,線源から放出される光子 1本当たりの各算出位置の線量を求めるため,管電流や照 射時間を設定せず,線量から線量比を算出した。

寝台位置・管球角度による空間線量分布図、ジオメト リの作成

人体デジタルファントムを用い、PHITS により寝台位置 及び管球角度を変化させた空間線量分布図のシミュレーシ ョンを行った。空間線量分布図を透視条件での線量率表示 にしたいため、平板ファントムを用いた場合の術者位置で の線量について、シミュレーション結果と実測での線量か ら、透視条件(10mA と仮定)に相当する線量率(µSv/h) に換算し、表示した。また、各条件におけるジオメトリの 3D 画像も出力した。寝台位置は x=-80cm~80cm の範囲で 20cm 毎、y=-20cm~20cm の範囲で 20cm 毎に変化させ、管 球角度は x 軸を中心に-90°~90°の範囲で 45° 毎に変化 させシミュレーションを行った。

5. Excel VBA を利用した画像表示

寝台位置と管球角度を入力することで,方法4で作成し たジオメトリ及び空間線量分布図を表示するシステムを構 築した。

Ⅲ. 結果

平板ファントムを用いた PHITS によるシミュレーションと実測値の関係

管電圧 60kV, 付加フィルタ 0.1mmCu としたときのシミ ュレーション結果と実測による線量比を表 2 に示し、グラ フ化したものを図 2 に示した。図 2 では x=150cm から 250cm の位置において実測値がシミュレーション結果より 低いように見えるが、表 2 に示すように平均値の差の検定 では x=250cm の位置でのみ有意差 (p<0.01) があり、その 他の位置では有意差はなかった (p>0.01)。

x=250cmの位置において実測値がシミュレーション結果 より明らかに低値を示した。そこで、テーブルサイドステ ータスコントロールを支持するポール、支持体等をシミュ レーション体系に組み込み再計算を行った。結果を図 3、 並びに表 2 の最下段に示した。ポール、支持体等有の x=150cmから 250cmの位置でのシミュレーション結果は、 図 2 に比べ実測値に近づいていることが分かる。また、平 均値の差の検定では、x=250cmの位置を含む全ての位置に おいて有意差がなかった(p>0.01)。

図 2 60kV, 0.1mmCu のシミュレーション結果と実測値

図 4 線質ごとの線量比の変化 (シミュレーションはポールと支持体等無しの条件)

次に,表1に示した各X線スペクトルによる線質の違いについてシミュレーションを行い,x=50cmの位置の線量で規格化した線量比を図4に示した。図4において,標準偏差を付した60kV,0.1mmCuの結果ではxが大き

表 2 実測とシミュレーションによる線量比 (x=50cm の線量で規格化)

* p<0.01, 値は線量比±SD

x (cm)	-250	-150	-50	50	150	250	350
実測値	0.08±0.01	0.22 ± 0.02	0.96±0.07	1.00	0.14±0.02	0.05 ± 0.01	0.03 ± 0.01
60kV, 0.1mmCu	0.091 ± 0.026	0.267±0.019	0.959±0.028	1.000	0.279±0.032	0.091±0.004*	0.040 ± 0.007
60kV, 0.1mmCu ポール,支持体等有	0.089 ± 0.007	0.263±0.012	0.972±0.047	1.000	0.259±0.080	0.088±0.012	0.053±0.020

表 3 線質の違いによるシミュレーション結果の線量比(x=50cm の線量で規格化)

x (cm)	-250	-150	-50	50	150	250	350
60kV, 0.1mmCu	0.086	0.327	0.945	1.000	0.283	0.096	0.041
60kV, 0.3mmCu	0.105	0.236	0.962	1.000	0.279	0.070	0.025
100kV, 0.1mmCu	0.095	0.249	0.993	1.000	0.264	0.104	0.044
100kV, 0.3mmCu	0.098	0.268	1.028	1.000	0.244	0.096	0.044

表中の線量比は1回のシミュレーションにより得られた結果を示す。

くなるほど偏差が大きくなり,線質の違いによる線量比への影響は確認できなかった。そこで,線質の違いによるシ ミュレーション1回での結果を表3に示した。表3にお いても線質の違いによる線量比に一定の傾向は見られなか った。本研究に使用した IVR 装置では管電圧及び銅フィル タが Auto で設定されるため,人体デジタルファントムを用 いた空間線量分布図及びジオメトリでは,表1に示した各 条件の中間である 80kV, 0.2mmCuを使用することとした。 80kV, 0.2mmCu でのX線スペクトルにおいて実効エネル ギーは 40.6keV と算出された。

2. 寝台位置・管球角度による空間線量分布図,ジオメト リの作成

アンダーテーブルチューブを基準とし、シミュレーショ ンにより得られた管球角度 0°,寝台位置 0cm におけるジ オメトリ及び空間線量分布図を図 5 に示した。得られたジ オメトリには検出器も表示した。空間線量分布図は青い部 分が比較的に線量は低く、赤い部分は比較的に線量が高い ことを意味する。ジオメトリでの C アームが空間線量分布 図の低線量域(空間線量分布図中の左上側)にあたる。人

図 5 管球角度 0°,寝台位置 0cm のジオメトリ及び空間線量分布図(80kV, 0.2mmCu)

体ボクセルファントムの足部は体幹部の吸収により低線量 域になっている(空間線量分布図中の **v=0cm** 領域)。

管球角度 0°,寝台位置 0cm の際のジオメトリ及び空間 線量分布図を図 6A (図 5 と同様,比較のため再掲)に 示した。この状態を基準状態とした。管球角度 0°,寝台 位置を頭尾方向に 40cm 移動させた際の空間線量分布図を 図 6B に示した。基準状態に比べ,頭側の線量が増加して いることがわかる。寝台位置を 0cm,管球を術者側に 90° 回転させた際の空間線量分布図を図 6C に示した。この時, 術者側の線量が著しく増加していることが視覚的にわかる。 寝台を頭尾方向に 40cm 移動させ,管球を術者側に 90°回 転させた際の空間線量分布図を図 6D に示した。頭側及び 術者側の線量が高いことがわかる。

3. Excel VBA を利用した画像表示

Excel VBA を用いて,寝台位置,管球角度の条件を入力 できるように画像表示システムのフォームを作成した。条 件の変化前後の比較が必要ではない場合は1つの条件のみ を入力し,「表示(比較なし)」のボタンをクリックするこ とで表示できるように作成した(図 7)。

2つの条件の比較を見る場合は2つの条件を入力し、「表示(比較あり)」のボタンをクリックすることで表示(図 8) されるようにフォームを作成した。

図 7 Excel VBA を用いた画像表示入力フォーム

図 8 2つの条件を入力した際のジオメトリ及び空間線量分布図の表示 (80kV, 0.2mmCu)

Ⅳ. 考察

平板ファントムでの PHITS によるシミュレーションと 実測値の関係について、60kV、0.1mmCu の X 線スペクト ルを用いてシミュレーションを行ったが、結果として x=250cmの位置においては実測値がシミュレーション結果 より明らかに低値を示し(表 2, 図 2)、有意差があった (p<0.01)。表2より x=-150cm と 150cm, x=-250cm と 250cm の線量比を比較すると、シミュレーションではほぼ同値で あり x に対して線量比は対称的であるが、実測値では明ら かに x=250cmの線量比は低値を示していた。そこで、テー ブルサイドステータスコントロールを支持するポール並び に支持体等をシミュレーション体系に組み込み再計算を行 った結果, x=250cmの位置においてもシミュレーション結 果と実測値に有意差はなくなった (p>0.01)。このことから、 ポール並びに支持体等により散乱線が吸収されることによ り実測値が低値を示したと考えられた。テーブルサイドス テータスコントロールを支持するポールや支持体は装置に より多様であり、また支持体を留める金属や寝台を支える 金属板、レール、金具等の配置や部材が明確ではないため、 空間線量分布の作成においては、テーブルサイドステータ スコントロールを支持するポールや支持体等の影響のない シミュレーション体系とした。

次に,線質の違いによる線量比の違いについては,60kV, 0.1mmCu から 100kV, 0.3mmCu, 実効エネルギーでは 34.5keV から 45.0keV の線質について線量比を算出した。 その結果,図 4 より線質の違いによる線量比に大きな影響 は見られず,表 3 においても線質の違いによる線量比に一 定の傾向は見られなかった。そこで,本研究では各条件の 中間である 80kV, 0.2mmCu の X 線スペクトルを使用し, 人体デジタルファントムでのジオメトリ及び空間線量分布 図を作成した。

先行研究では寝台移動を考慮した空間線量分布図については報告されていない。そこで、本研究では寝台移動及び管球角度の変化による空間線量分布の変化をシミュレーションにより可視化した。また、Excel VBAを用いて画像表示システムの構築を行い、ジオメトリ及び空間線量分布図を簡便に表示することを可能にした。

これにより放射線について学ぶ方に対する教育訓練等 の放射線防護教育に役立つと考えられた。また、現在臨床 の現場で働く放射線業務従事者に対しても、位置による被 ばくの差が可視化されることから被ばく低減に役立つと考 えられた 11)。ただし、本研究で得られた空間線量分布図は あくまでシミュレーションにより得られたものである。し たがって、患者の体の大きさ、部位、BMI¹²⁾によって大き く変化するものであり、X線の出力によって線量も異なる ため、必ずしもシミュレーションの結果が実際の線量をそ のまま反映しているとは限らないことに注意する必要があ る。平板ファントムでは、シミュレーションと実測におい て幾何学的配置を同一にできるため、結果について差異を 明らかにすることができた。しかし、人体デジタルファン トムの空間線量分布図は照射条件を仮定したものであり, かつ人体デジタルファントムの実測値が得られないため, 実測値とシミュレーション結果との差異については今後検 討が必要であると考えられた。

また、本研究で得られた空間線量分布図は全て床面から 100cmの位置のものである。床面からの高さによって空間 線量分布は変化する¹³⁾ことから、今後は高さの変化も考 慮したシステム構築を行う必要があると考えられた。

本研究で作成した画像表示システムは、シミュレーショ ンにより得られたジオメトリ及び空間線量分布図を読み出 して表示するというものである。現状では寝台位置は x=-80cm~80cm まで 20cm 毎, y=-20cm~20cm まで 20cm 毎,管球角度は x 軸を中心に-90°~90° まで 45° 毎のジ オメトリ及び空間線量分布図を読み出せる。より細かな管 球角度,寝台位置の条件においてシミュレーションを行う ことにより,多様なジオメトリ及び空間線量分布図の表示 に対応が可能となる。

Ⅴ.結語

本研究においては、線質の違いにより規格化した線量比 に大きな差が見られないことを確認した。また、寝台移動 及び管球角度の変化による空間線量分布図の変化をシミュ レーションにより可視化した。さらに、画像表示システム の構築を行い、管球角度及び寝台位置の条件による空間線 量分布図の比較が容易となった。これにより放射線につい て学ぶ方に対する教育訓練等の放射線防護教育に役立つと 考えられた。

利益相反 開示すべき利益相反はありません。

謝辞 本研究にあたってご協力くださった弘前大学医 学部保健学科卒業生の大里翔馬様,星野優歩様並びに弘前 大学医学部附属病院医療技術部放射線部門の皆様に深く感 謝いたします。また,本研究は科研費 JP19K10705, JP21K10366, JP22K10435 の助成を受けたものです。

引用文献

- 電離放射線障害防止規則第 54 条第 4 項: https://elaws.e-gov.go.jp/document?lawid=347M50002000041_20 210401_502M60000100082&keyword=%E9%9B%BB%E9%9B %A2%E6%94%BE%E5%B0%84%E7%B7%9A%E9%9A%9C% E5%AE%B3%E9%98%B2%E6%AD%A2%E8%A6%8F%E5%89 %87, (2022-12-7).
- 2) 人事院規則 10-5, 23 条第 5 項:

https://elaws.e-gov.go.jp/document?lawid=338RJNJ10005000_202 10401_502RJNJ10005011&keyword=%E4%BA%BA%E4%BA% 8B%E9%99%A2%E8%A6%8F%E5%89%87%E4%B8%80%E3% 80%87, (2022-12-7).

- 医療法施行規則第1条の11第2項三の二: https://elaws.e-gov.go.jp/document?lawid=323M40000100050_20 221101_504M60000100152&keyword=%E5%8C%BB%E7%99% 82%E6%B3%95, (2022-12-7).
- 4) 厚生労働省指針策定ガイドライン: https://www.jsrt.or.jp/data/wp-content/uploads/2019/10/84acd46e0 68e2622914410f6a29f26bc.pdf, (2022-12-7).
- 5) 藤淵俊王,上田昂樹,門柳紗妃,他:仮想現実を利用した放 射線検査における散乱線分布の四次元可視化による放射線 防護教育への活用法の検討. 日本放射線技術学会雑誌, 75(11): 1297-1307, 2019.
- 6) Sato N, Fujibuchi T, Toyoda T, et.al.: Consideration of the

protection curtain's shielding ability after identifying the source of scattered radiation in the angiography. Radiation Protection Dosimetry, 175(2): 238-245, 2017.

- Sato T, Iwamoto Y, Hashimoto S, et al.: Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02. J. Nucl. Sci. Technol, 55(5-6): 684-690, 2018.
- The International Commission on Radiological Protection and The International Commission on Radiation Units and Measurements: Adult Reference Computational Phantoms. ICRP Publication 110, 39(2): 39, 2009.
- 9) 加藤秀起: X-Tucker-4, https://www.soft222.com/x-tucker/, (2022-11-29).
- The International Commission on Radiological Protection: Conversion Coefficients for use in Radiological Protection against External Radiation. ICRP Publication 74, 26(3-4): 179, 1996.
- Takata T, Kotoku J, Maejima H, et al.: Fast skin dose estimation system for interventional radiology. Journal of Radiation Research, 59(2): 233-239, 2018.
- 12) Santos WS, Belinato W, Perini AP, et al.: Occupational exposures during abdominal fluoroscopically guided interventional procedures for different patient sizes-A Monte Carlo approach. Physica Medica, 45: 35-43, 2018.
- 小宮睦弘,工藤幸清,工藤真也,他: Interventional radiology 時 における医療従事者の水晶体被ばく推定を目的とした散乱 X 線分布図の有用性.保健科学研究,9:41-47,2019.

[Original article]

Systematization of Dose Distribution Map and Geometry Display in an Interventional Radiology Room

RYOTA ARAI^{*1} KOSEI KUDO^{*2} JUN ABO^{*1} HAYATE SAKAMOTO^{*1} MAYUKA CHIDA^{*1} TOMUHIRO NORO^{*3} MINORU OSANAI^{*2} MEGUMI TSUSHIMA^{*2} NOBUHIRO KOMIYA^{*4} YOSHIHIKO KASAI^{*5} MASATAKA NARITA^{*5}

(Received June 6, 2023; Accepted June 24, 2023)

Abstract: It has been suggested that the display of spatial dose distribution maps in an interventional radiology (IVR) room could be used for radiation protection education of radiation practitioners who do not have specialized knowledge. In this study, we used the particles and heavy ion transport code system (PHITS), a Monte Carlo simulation software, to compare the simulated spatial dose distribution in an IVR room using a flat phantom with the dose ratios normalized by the dose at the assumed position of the radiologist. The simulation results were compared with the measured values. For the flat phantom, the dose ratios at the normalized measurement positions did not differ between the simulated and measured results in a t-test with a significance level of 1% when the pole supporting the tableside status control and the object supporting the table were taken into account. We then calculated the spatial dose distribution and geometry in the IVR room for each bed position and tube angle using a human digital phantom. We designed a system to display the obtained spatial dose distribution and geometry using Excel visual basic for applications (Excel VBA), and to display images before and after changes in bed position and tube angle. We consider that this system could contribute to radiation protection education for personnel present during IVR procedures. It should be noted, however, that the spatial dose distribution maps obtained in this study were obtained by simulation and do not indicate actual doses.

Keywords: Interventional radiology, Spatial dose distribution, Monte Carlo simulation software